Chapter 20: Electric Charge, Force & Field Chapter 21: Gauss' law Tuesday September 6th

Reminders and Brief Review

- •Coulomb's law
- •Electric fields
- •Electric dipoles
 - •Electric field due to a dipole
 - •Some properties of dipoles
- Continuous charge distributions
 - •Electric field due to a line of charge
 - •Charge densities
- •Intro. to Gauss' law (if time)

Reading: pages 335 - 354 in the text book (Chs. 20/21)

Electric fields

Newton's law for electrostatics:

There's really no need for the "test charge"

$$\vec{F} = q\vec{E}$$

This is the force on a charge q in an electric field \vec{E} Units for E are N/C in this chapter (later we shall use volts per meter)

Electric fields

Some Electric Fields

Location	Electric Field (N/C) (V/m)
At the surface of a uranium nucleus	3×10^{21}
In a hydrogen atom, at the electron's	
average radius	5×10^{11}
Electric breakdown occurs in air	3×10^{6}
At the charged drum of a photocopier	10 ⁵
The electron beam accelerator in a TV set	10 ⁵
Near a charged plastic comb	10 ³
In the lower atmosphere	10 ²
Inside the copper wire of household circuits	10 ⁻²

Units for *E* are N/C in this chapter (later we shall use volts per meter)

Electric field lines

- Electric field lines start on positive charges and end on negative charges (can also start/end at infinity).
- The symmetry of the problem dictates the directions in which field lines radiate from charges.

- The tangent to an electric field line at a point in space gives the direction of the electric field at that point.
- The magnitude of the electric field at any point is proportional to the number of field lines per unit cross-sectional area perpendicular to the lines (tightness of their spacing).
- Plus charges experience a force parallel to the field lines; negative charges in the opposite direction.

Electric field lines

- The number of field lines radiating from a charge is proportional to the charge.
- Field lines cannot cross (why?)

Source q_i q_j P

$\vec{E}_{P} = \vec{E}_{1} + \vec{E}_{2} + \vec{E}_{3} + \dots \vec{E}_{i} = \sum_{i} \vec{E}_{i}$

On the dipole axis (along z axis): $E_z = \frac{1}{2\pi\varepsilon_o} \frac{p}{z^3}$ (z >> d)

A Dipole in an Electric Field

 $\tau = Fd\sin\theta$

- $= qdE\sin\theta$
- $= pE\sin\theta$

 $= \vec{\mathbf{p}} \times \vec{\mathbf{E}}$

Force = gradient in the potential energy

Superposition principle (continuous charge distribution)

$$\vec{E}_{P} = \vec{E}_{1} + \vec{E}_{2} + \vec{E}_{3} + \dots \vec{E}_{i} = \sum \vec{E}_{i}$$

i

Superposition principle still holds:

$$\vec{E}_{P} = \int d\vec{E} = \hat{i} \int dE_{x} + \hat{j} \int dE_{y} + \hat{k} \int dE_{z} = \int \frac{kdq}{r^{2}} d\hat{r}$$

length, λ , in Coulombs per meter.

Charge densities

In 1D (a line or wire):

$$\lambda = \frac{Q}{L}$$
, or $\lambda = \frac{dQ}{dL}$

 λ is the line charge density, or charge per unit length, in Coulombs per meter. *L* represents length, and *Q* is charge.

In 2D (a surface or sheet):
$$\sigma = \frac{Q}{A}$$
, or $\sigma = \frac{dQ}{dA}$

 σ is the surface charge density, or charge per unit area in Coulombs per meter²; A represents area, and Q is charge.

In 3D (a solid object):
$$\rho = \frac{Q}{V}$$
, or $\rho = \frac{dQ}{dV}$

 ρ is the volume charge density, or charge per unit volume in Coulombs per meter³. V represents volume, and Q is charge.